
Implemented by

The Data Science in Python Playbook
How to turn data into assets

Data Science in Python Playbook
How to turn data into assets

4
DATA SCIENCE IN PYTHON PLAYBOOK

Contents

1.0 	 How to Get Started... 6
2.0	 Introduction - What is Python Built on? .. 8
		 Numbers..12
		 Strings	..13
		 A Brief Introduction to Methods..15
		 Lists, Tuples, and Dictionaries...17
		 Lists	..17
			 Accessing Values in Lists...18
			 Updating Lists...18
		 Tuples	..20
		 Dictionaries...20
		 Loops	...23
3.0 	 Libraries (Otherwise Known as Modules).. 27
4.0 	 Functions.. 33
5.0 	 The DataFrame...36
		 Pandas Series...37
		 Head and Tail..38
		 Dealing with Missing Data..38
		 Data Cleaning - Worked Example..41
6.0	 Indexing and Selecting Data in Pandas...44
		 []	 ...45
		 .loc	..45	
		 .ilo	..46
		 Worked Examples...46
7.0	 Aggregation... 52

5

>>> print(“Hello,”)

Contents

8.0 	 Plotting	..56
		 Basic - Series Plots..57
		 Dataframe Plots.. 60
9.0 	 Introduction to Machine Learning Models..64
10.0	�Can We Make a Model That Accurately Predicts the Amount

of Tea Plucked in Advance?.. 70
		 Weather Data..71
		 Weather Data API...77
		 Reading in Mapera Farm Data...79
		 Modelling..83
		 Baseline Model...83
		 Introducing Weather Data into the Model..87

1.0
How to Get Started

>>> print(“Hello,”)

?

7
Chapter 1.0	 How to Get Started

How to Get Started

In order to follow this playbook and be able to conduct the containing Python
exercises directly in Jupyter Notebook, please make sure to install the following
components on your local machine before getting started:

- �Install Anaconda:
https://www.anaconda.com/products/individual

- �YouTube video with installation instructions:
https://www.youtube.com/watch?v=T8wK5loXkXg

- �Get a GitHub account:
https://github.com/

https://www.anaconda.com/products/individual
https://www.youtube.com/watch?v=T8wK5loXkXg
https://github.com/

2.0
Introduction

>>> print(“Hello,”)

9
Chapter 2.0	 Introduction

INTRODUCTION - WHAT IS PYTHON BUILT ON?

Objects:

• �An object is just another way of saying ‘this is a specific type of data and I can do
certain things with it’.

• �The purpose of writing code is to allow these objects to interact with each other
in some way.

• �Informally speaking, Python lets us ‘do things with stuff’, where the ‘stuff’
are objects, and the ‘things’ are the interactions, like: addition, multiplication,
concatenation and anything else.

• �From this we can say that to be fluent in Python is to have a strong understanding
of what type of object you are working with, and how these objects can interact
with each other.

• �Objects are so important that when you download Python, it comes with built-in
types of objects (usually just referred to as ‘types’) which are so common that the
developers decided they should always be available to everyone.

NUMBERS
(Int, Float, Decimal, Fraction)

STRINGS LISTS DICTIONARIES TUPLES

‘Hi’, “Hello” [‘one’,1] {‘Greet’ : ’Hallo} (‘one’, 2)5, 0.0, 0i+0j

Note that this not an exhaustive list of types, and their formal definition allows for
much more than this, but practically speaking, these are the big ones that will come
in handy when trying to code on a day-to-day basis.

10
DATA SCIENCE IN PYTHON PLAYBOOK

Writing Comments in Python
In addition to writing code, note that it’s always a good idea to add comments to
your code. It will help others to understand what you were trying to accomplish
(the reason why you wrote a given snippet of code). Not only does this help other
people to understand your code, it can also serve as a reminder to you when you
come back to it weeks or months later.

To write comments in Python, use the number symbol # before writing your
comment. When you run your code, Python will ignore everything past the # on a
given line.

Practice writing comments

>>> print(“Hello, Python!”) # This line prints a string

>>> # print(“Hi”)

After executing the cell above, you should notice that the second line did not
appear in the output, because it was a comment (and thus ignored by Python).
The second line was also not executed because print(“Hi”) was preceded by the
number sign (#) as well! Since this isn’t an explanatory comment from the
programmer, but an actual line of code, we might say that the programmer
‘commented out’ that second line of code.

Errors in Python
Everyone makes mistakes. For many types of mistakes, Python will tell you that
you have made a mistake by giving you an error message. It is important to read
error messages carefully to really understand where you made a mistake and how
you may go about correcting it.

For example, if you spell print as frint, Python will display an error message.
Give it a try:

Print string as error message

>>> frint(“Hello, Python!”)

It will tell you where the error occurred (more useful in large notebook cells or
scripts), and what kind of error it was (NameError).

11
Chapter 2.0	 Introduction

Here, Python attempted to run the function ‘frint’, but could not determine
what ‘frint’ is since it’s not a built-in function and has not been previously
defined by us either.

You’ll notice that if we make a different type of mistake, by forgetting to close
the string, we’ll obtain a different error (i.e. a SyntaxError). Try it below:

Try to see built-in error message

>>> print(“Hello, Python!)

Does Python know about your error before it runs your code?

Python is what is called an interpreted language. Compiled languages examine
your entire programme at compile time and can warn you about a whole class of
errors prior to execution. In contrast, Python interprets your script line-by-line as
it executes it. Python will stop executing the entire programme when it encounters
an error (unless the error is expected and handled by the programmer, a more
advanced subject that we’ll cover later on in this course).

Try to run the code in the cell below and see what happens:

Print string and error to see the running order

>>> print(“This will be printed”)

>>> frint(“This will cause an error”)

>>> print(“This will NOT be printed”)

Built-in types can be combined in intuitive ways to let us build what we need.

12
DATA SCIENCE IN PYTHON PLAYBOOK

Numbers

Let’s take the example that we want to calculate how much tax we need to pay
for the tea that has been picked on our farm. If we know:

•	 number of kilos plucked
•	 tax rate per kilo of tea

We can calculate the total amount of tax using the equation tax = number
of kilos plucked * tax rate per kilo of tea.

If we know we picked 45 kilos of tea, and are taxed at Kshs 10 per kilo, we can
put this into a cell and it will calculate the answer:

When we typed 45 and 10, Python immediately knew that this was a number
type (specifically it was an int (integer) type) which meant that it knew that you
could use the * symbol to multiply these together.

Number types support the normal operations:

• 	 + 	 addition
• 	 - 	 subtraction
•	 * 	 multiplication
• 	 / 	 division
• 	 **	 exponentiation

We can also check to see what type our number is by using the function, which
we’ll explain soon:
type()

13
Chapter 2.0	 Introduction

Great! So, with this knowledge we already know that we can use Python as a
scientific calculator, doing arbitrarily complex calculations:

Again, we can check the type of the string to see that everything is working as
expected.

Remember, that these strings are different to what you are reading right now.
These strings are objects which means that they are stored in Python’s memory
somewhere.

Strings also have the benefit of understanding operations:

• 	 + 	 addition of stings
• 	 - 	 multiplication, of a str and int type

Notice that brackets by themselves are also used in the way you would expect
them to work in normal maths.

Strings

Strings are Python’s name for text. This is how text is stored. For Python to
recognise that you are trying to write a string, just write some text and surround
that text with either single ’ or double ” quotation marks.

If you want Python to recognise that you are writing a string that spans multiple
lines, use three quotation marks, either ’’’ or ””” on each side of your text.

14
DATA SCIENCE IN PYTHON PLAYBOOK

Other operators that are understood as number types are not understood here,
since they don’t really make sense in the same way as the:

•	 - 	 subtract operator
•	 / 	 divide operator
•	 **	 exponentiation operator

An error is thrown here since Python does not understand how to subtract two
strings from each other.

Here, we’ve managed to create something that looks a lot like the copy-paste
function.

Since we know that strings are a certain type of object, they all share
certain functionalities which we may find handy in different situations.

Try pressing the ‘full stop’ key and the ‘tab’ key after

you’ve written a string and see what comes up. You should

see a list of things you can do out-of-the-box to a string.

15
Chapter 2.0	 Introduction

Each item that has come up in the list is known as a ‘method’ – we’ll explain
this later. For now, after you pick a method, make sure to type () after the word
you selected for it to do something!

A Brief Introduction to Methods

Before going any further, it is worth introducing the concept of a method.

We just used a method when working with strings above, when we wrote the
code:‘hello’.capitalize(). The general thing that we did here was call a
method on an object. When written in code, it always looks the same:
object.method(arguments)

Where:

• 	� Object: Is what we have been discussing so far and can be a numeric,
string, and list type of object.

• 	 �.: The full stop is what we use to tell Python that the next thing we write
will be a method, so it is important!

• 	 �Method: A piece of functionality that will save us from having to code the
solution up ourselves.

• 	� Arguments**: Not introduced in the ‘hello’.capitalize() example.
Since the method takes no arguments, this is a value that is required for the
method to be able to work, i.e. a variable that must be set before the method
can run. An example of this is the ‘hello’.find(‘h’) example above.
The method ‘find’ requires a value to find, otherwise... what is it supposed to
find?

16
DATA SCIENCE IN PYTHON PLAYBOOK

This is a very common pattern which provides a lot of functionality to us without
having to do very much work. This is a deep topic which goes to the very heart of
the Python programming language itself, but we can think of it simply as providing
us with functionality that would take a long time to code ourselves. (Capitalising
a string may be quick, but there are some methods which save a huge amount of
time, especially when we use lots of them together).

The other thing we have to know is that every object has its own set of methods.
This is useful information because we know we can call the capitalize()
method on any string.

There are some special and simple methods that were deemed so fundamental
that they can be called without an object. There are not many of these, though
some examples include:

• 	� print(): Probably the most common method of its kind, is used all the time
to print text, to debug, to explain, etc.

• 	� type(): Checks what type of object the value in the argument is.

• 	� len(): Checks the length of the object inside the brackets.

• 	� min(): Returns the minimum value of a sequence of numbers.

• 	� max(): Returns the maximum value of a sequences of numbers.

• 	� list(), dict(), tuple(), str(), float(), int(): All the core types
have a base method which converts a value to this object.

• 	� input(): Type an input value from the output console for the code to run.

Knowing this information, now try using the print() built-in method to print
your name, which has also been capitalised using the .capitalize() object
method.

17
Chapter 2.0	 Introduction

Lists, Tuples, and Dictionaries

These three types are all examples of containers. All this means is that they
are used to store other bits of data in various ways.

These containers can store any object and can be any length (as long as you
have enough RAM), meaning that they are extremely flexible within their own
definitions.

Lists

For lists, objects are stored in between square brackets [] and individual
objects are separated by a comma ,. These objects can be anything – even other
lists! Operations available to lists:

•	� + 	� Addition: Is only available for two lists where the symbol joins them
together, like in a string.

•	 *	� Multiplication: Is like the string example only it works with an integer.
• [i]	�Slicing: Is the ability to select a single element or a range of a list and

work with that.

Indexing
For containers (or any object that contains more than one object) we need to
know how to select each element. Python’s convention is to call the first element
in any list, tuple, or dictionary the 0th element. I.e. to select the first element in
a list, we would use the number 0 inside square brackets:

18
DATA SCIENCE IN PYTHON PLAYBOOK

Accessing Values in Lists
In order to only access ‘Pruning’ from the list below, select the list object along
with the index of the value that you would like to select.

An important thing to note is that the index of a list begins with 0 instead of 1.
This means that if you wanted to select the value ‘Tea’ from the activities list
below, the correct syntax is: activities[0]

Updating Lists
You can update single or multiple elements of lists by giving the slice on the
left-hand side of the assignment operator. For example:

The farm subsidises food for the workers at a lower-than-market rate.

In response, we will update the list with ‘cabbage’ and ‘milk’:

19
Chapter 2.0	 Introduction

Notice the use of methods as introduced earlier in the next few cells of code.
They all provide functionality that would not be obvious/easy to code up and let
us work with lists in a more intuitive way.

A quick way to read about / learn what different methods do, is to click inside the
brackets of a method, and press [SHIFT]+[TAB]+[TAB] to see an explanation of what
it does:

Other methods include:

list.count(‘Avocado’): returns count of how many times obj occurs in list
list1.extend(list2): appends the contents of list2 to list1
list.index(‘Avocado’): returns the lowest index in list that obj appears
list.insert(3, “Mangoes”): inserts object obj into list at offset index
list.remove(“tea”): removes object obj from list
list.reverse(): reverses objects of list in place

20
DATA SCIENCE IN PYTHON PLAYBOOK

Tuples

Tuples are very similar to lists, in that you can do operations with them (+ and *),
but the difference is that they are immutable. This means that once they are
created, you can’t change their individual elements!

Tuples are created with objects that are put in between normal brackets () as
seen below:

Dictionaries

A dictionary can also be any length, since it is a container, but here the values come
in pairs rather than alone. The idea is that you can use the first value to look up the
value of the second (just like in a normal dictionary!). The elements in a dictionary
are called key-value pairs.

Dictionaries are created using curly brackets {}, a comma , to separate pairs of
values, and a colon : to separate the first and second value of any key-value pair.
To select elements in this dictionary, instead of using the index of the container, we
use its key. This allows us to keep a record of information all in one place. If we go
back to the amount of tax that we must pay for plucking tea, it is possible for us to
keep all our values for the calculation in one place.

21
Chapter 2.0	 Introduction

To access dictionary elements, you can use the familiar square brackets along with
the key to obtain its value. For example:

Keys Values

dictionary_list = { �‘name’ : ‘Ariel’,
‘hobbies’ : [‘painting’, ‘painting’, ‘painting’, ‘cooking’] }

Key 1

Key 2

Value 1

Value 2

‘ Bob ’‘ name ’

‘ 25 ’‘ age ’

‘ Dev ’‘ job ’

‘ New York ’‘ city ’

‘ bob@web.com ’‘ email ’

mailto:bob@web.com

22
DATA SCIENCE IN PYTHON PLAYBOOK

Other dictionary methods include:

dict.clear(): removes all elements of dictionary dict
dict.copy(): returns a shallow copy of dictionary dict
dict.fromkeys(): creates a new dictionary with keys from seq and values
set to value
dict.get(“Price”, default=None): for key, returns value or default if key
is not in dictionary
dict.has _ key(“price”): removed, use the in operation instead
dict.items(): returns a list of dict’s (key, value) tuple pairs
dict.keys(): returns a list of dictionary dict’s keys
dict.setdefault(“Amount”, default = None): similar to get(), but will
set dict[key]: default if key is not already in dict
dict.update(dict2): adds dictionary dict2’s key-values’ pairs to dict
dict.values(): returns list of dictionary dict’s values

Now that we know all the basic types available in Python, we can start doing some
useful things with them!

Let’s say that we wanted to calculate our daily income using Farm Valleydrum
prices, and all we had was a dictionary with the activity and prices of each activity:

We know that to calculate our daily income, we would need to multiply each one
of the prices by the number of kilos/ bushes that were picked. So how can we tell
Python to do this?

The answer: with loops.

23
Chapter 2.0	 Introduction

Loops

A powerful element of programming is that we can cycle through every single
element in any container, and do something with it. The general structure of a
‘for’ loop looks like this:

What Python is doing here, is going through every element in a container, one by
one, and executing the code that is written on the next line. Notice that the second
line in the pseudo-code above does not start at the very left-hand side of the line,
instead it is indented. This is part of the ‘code’ in Python, and is important, as it tells
Python that everything indented below the statement for element in
container: is part of the loop and should be run numerous times.

What is happening here, is that Python interprets all the code that is indented as
being part of the for-loop. So, if we want to do something to an element, the code
must be indented. You can create an indent by either pressing the ‘tab’ key or
pressing spacebar four times.

Assume we have a person working for five days and the number of kilos he
plucks is put in the container as Monday=20, Tuesday= 30, Wednesday= 55,
Thursday= 20, Friday= 40. To work out his daily wage, we can use:
container = [20,30,55,20,40]

for element in container:

do something here
Indent

24
DATA SCIENCE IN PYTHON PLAYBOOK

We can use this functionality to calculate our total daily income:

If we organise the amount of tea plucked and the amount of weeding with their
prices in the following way, we can use a loop to calculate the total income:

Amount, measured in kilograms (kg), for Monday is 20kg, Tuesday weeding,
Wednesday weeding, Thursday is 20kg and Friday is 40kg.

Note how the individual elements of the list can be manipulated as normal numbers
and not lists!

We could also do the same calculation using the ‘prices’ dictionary, although it
would look slightly different:

25
Chapter 2.0	 Introduction

Click the link below to view a programme which visualises what happens in every
step!

https://t1p.de/k627

Click the ‘next’ button in the link to get the programme to read the next line of code.

https://t1p.de/k627

3.0
Libraries

>>> print(“Hello,”)

27
Chapter 3.0	 Libraries

LIBRARIES (OTHERWISE KNOWN AS MODULES)

A library is a simple but very powerful concept. At its core, it is simply code which
has already been written and can be imported so that we can use that functionality.
There are different libraries to speed up coding time for almost any purpose. Popular
libraries include:

• 	� Plotting libraries. The original plotting library for Python is called Matplotlib
and is frequently used to display plots such as: bar graphs, scatter plots,
distribution plots and much more.

• 	� Mathematical libraries. Examples include math, SciPy and NumPy. These
libraries make long calculations much easier and are used extensively in the
scientific community.

• 	 �Data preparation libraries. The most common package is Pandas, which stands
for ‘Python Data Analysis Library’, and is used to access and process data.

• 	� Machine learning libraries. Scikit-learn and Keras are libraries that are used
to develop machine learning models and make various predictive insights.

These are just a few of the more common libraries used in Python, however a
wider variety is available, and range from signal processing to even art-creation
with Python!

There are two steps to getting a library to successfully work in your notebook,
which includes:

• 	� downloading the library

There are multiple ways to do this. Since we are in a notebook, the easiest way is to
type the ‘magic’ command: !pip install [LIBRARY HERE] for example,
!pip install numpy. Since you have already downloaded Anaconda, it comes
with many of the more popular libraries pre-downloaded, so for something like
NumPy or Pandas, this step can be skipped entirely. However, if you want a specific
functionality then you will have to download it!

•	 importing the library

This is much simpler but must be done each time you open a new notebook. To
import, simply type import [LIBRARY HERE] where the library can be called
after this step. You can also write as [ABBREVIATION] which is common when
you know you will have to type out the word a lot in the future. A common
approach for importing Pandas is to type import pandas as pd.

28
DATA SCIENCE IN PYTHON PLAYBOOK

We see from the output that Pandas is already installed in Anaconda:

Data Acquisition
There are various formats for a dataset, .csv, .JSON, .xlsx etc. The dataset
can be stored in different places, either on your local machine or occasionally
online. In this section, you will learn how to load a dataset into our Jupyter
Notebook. In our case, we will read in data for Mapera Farm, which is in an Excel
(.xlsx) format. Let’s use this dataset as an example to practice data reading.

The Pandas Library is a useful tool that enables us to read various datasets into a
dataframe. Our Jupyter notebook platforms have a built-in Pandas Library so that
all we need to do is import Pandas without installing.

Read Data
We use the pandas.read _ csv() method to read the .csv file. In the brackets,
we put the file path along with quotation marks, so that Pandas will read the file
into a dataframe from that address. The file path can either be a URL or your local
file address. Since the data does not include headers, we can add an argument
header = None inside the read _ excel() method, so that Pandas will not
automatically set the first row as a header. You can also assign the dataset to any
variable you create:

29
Chapter 3.0	 Libraries

The Power of Methods
After reading the dataset, we can use the dataframe.head(n) method to
check the top ‘n’ rows of the dataframe; where ‘n’ is an integer. Contrary to
dataframe.head(n), dataframe.tail(n) will show you the bottom ‘n’
rows of the dataframe. This is as simple as calling the .head() method, as all the
work to display the rows in our notebook has been completely removed:

Save Dataset
Correspondingly, Pandas enables us to save the dataset to .csv by using the
dataframe.to _ csv() method. You can also add the file path and name along
with quotation marks inside the brackets.

For example, if you were to save the dataframe ‘df’ as ‘automobile.csv’ to
your local machine, you may use the syntax below:

30
DATA SCIENCE IN PYTHON PLAYBOOK

Basic Insight of Dataset
After reading data into the Pandas dataframe, it is time for us to explore the dataset.
There are several ways to obtain essential insights of the data to help us better
understand our dataset.

Data Types in Pandas
Data has a variety of types. The main types stored in Pandas’ DataFrames are
object, float, int, bool and datetime64. In order to learn about each attribute, it is
useful for us to know the data type of each column in Pandas:

Describe
If we would like to get a statistical summary of each column, such as: count,
column mean value, and column standard deviation, we use the ‘describe’
method:

31
Chapter 3.0	 Libraries

This method will provide various summary statistics, excluding NaN (Not a
Number) values.

This shows the statistical summary of all numeric-type (int, float) columns.

However, what if we were to check all the columns, including those that are of
type object?:

Now, it provides the statistical summary of all the columns, including object-typed
attributes. We can now see how many unique values, which is the top value and
the frequency of top value in the object-typed columns. Some values in the table
above show as ‘NaN’ because those numbers are not available as a particular
column type.

4.0
Functions

>>> print(“Hello,”)

33
Chapter 4.0	 Functions

FUNCTIONS

Functions are conceptually similar and act as a piece of functionality that can
be called multiple times, so that you don’t have to write the code every time.
The syntax looks like this:

This is perhaps one of the simplest functions where the important features of this
bit of code are as follows:

PYTHON READS EVERY-
THING INDENTED AS PART
OF THE FUNCTION

These letters are how
python recognises you
are about to write a
function

Normally functions return some
value, we do this with the ‘return’
statement. But they don’t have to!

Function name, can be
anything - you will use it later

Argument(s), used in the
body of the function for
calculation

def funtion (argument):

return result

WRITE SOME CODE IN HERE
result = ' Hello ' + argument

34
DATA SCIENCE IN PYTHON PLAYBOOK

Are Functions and Methods the Same Thing?

Almost, but no.

You may have noticed the similarity between the function we just built, and a
‘method’ defined in the previous workshop. The two are almost the same since
they do indeed have the same syntax when comparing functions with built-in
methods. The difference is subtle, and even though they are often referred to in
the same way, they do serve slightly different purposes:

•	 a Function is something that is written as a standalone piece of functionality
•	 a Method is a function which is attached to an object

This means that if you define a function somewhere in your code, you can call it
anywhere and without writing out the object first, i.e. `Function(arguments)̀,
while a method has to be called on the object, using the .̀̀ symbol to state that
you are going to call a method of an object.

The syntax for this is:

`Object.method(arguments)̀ , and the only cases you see the syntax of
`method(arguments)̀ are for Python’s special built-in functions.

35
Chapter 4.0	 Functions

5.0
The DataFrame

>>> print(“Hello,”)

37
Chapter 5.0	 The DataFrame

THE DATAFRAME

According to the Pandas’ API documentation (where you can also read more about
what the library can do for you), a DataFrame is:

A 2-dimensional labelled data structure with columns of potentially different
types. You can think of it like a spreadsheet or SQL table, or a dict of Series objects.
It is generally the most used Pandas object. Like Series, DataFrame accepts many
kinds of input:

•	 dict of 1D ndarrays, lists, dicts, or Series
•	 2-D numpy.ndarray
•	 structured or record ndarray
•	 a Series (another Pandas object, it is a single column of a Pandas DataFrame)
•	 another DataFrame

Pandas Series

Series is a one-dimensional labelled array capable of holding any data type
(integers, strings, floating point numbers, Python objects, etc.). A Pandas series
can hold many different types of data, including:

•	 a Python dictionary
•	 an array (or list)
•	 a scalar value (like 5)

To read more about the different objects in the Pandas libraries, you can visit the
website here:

https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html

In this playbook we will be focusing on the practical application of Pandas rather
than repeat the information that is available above. Concepts will be introduced as
and when they are required, but keep in mind that there is a full set of information
describing the library in the link!

https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html

38
DATA SCIENCE IN PYTHON PLAYBOOK

Head and Tail

To view a small sample of a Series or DataFrame object, use the ‘head()’ and
‘tail()’ methods. The default number of elements to display is five, but you
may pass a custom number.

It’s useful to run these two methods straight after you’ve read in the data. This is
to make sure that the columns are as you expect, and that the read-in method that
was called has given you the data that you need to work with.

Dealing with Missing Data

If you have called the read _ csv method, any values that were originally empty
in the .csv will be converted to ‘NaN’ values. These are generally difficult to
work with, as they will hinder functionality if left unchecked (such as plotting or
if you want to make a function apply to each cell in a column; that function may
break if it sees an ‘NaN’ value).

39
Chapter 5.0	 The DataFrame

For a more comprehensive explanation of working with missing data, it is possible
to visit the link below to see how the creators of Pandas envisioned dealing with
missing data:

https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.
html#missing-data

In most cases, it will be that we want to replace the ‘NaN’ values with something
which is friendlier to work with. Since we know that our data is numeric, a common
option is to replace the ‘NaN’ values with 0. This makes sense in our case, since
workers with ‘NaN’ values in any cell would not have picked any tea on that day.

It worked!

We could have decided to fill our values with something related to the same
column/row in which they were found, which is what the ‘method’ argument is
for (remember, press [SHIFT]+[TAB]+[TAB] to view the details of a method).

https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html#missing-data
https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html#missing-data

40
DATA SCIENCE IN PYTHON PLAYBOOK

For example, we could have chosen to fill the values with previous/future values
seen in the column/row by using the keyword ‘backfill’; this would turn the
NaN values into the same value as seen later on in the column. Of course, since we
just converted all our `NaN` values to zeroes, this function will no longer do
anything, and just displays what we already have.

41
Chapter 5.0	 The DataFrame

The process of ‘data cleaning’ just means asking the question: ‘Does the data look
like what we were expecting?’

Everything looks correct, except for the column under ‘ROBERT AIYEKE’, which
shows that the column type is an object. Why is this the case? We were expecting
numbers in there...

Data Cleaning - Worked Example

We can quickly check to see what the ‘types’ of the individual columns are, by
using the attribute ‘object.dtypes’:

42
DATA SCIENCE IN PYTHON PLAYBOOK

For some reason, Python isn’t letting us convert this column into numbers, even
though the strings look like they contain numbers.

On closer inspection, there’s one entry that Python doesn’t know what to do with.
Can you spot it?

There isn’t supposed to be an empty cell! What is it?

It appears that this row is a mix of zeroes and numbers but stored as a string
(we can tell by the quotation marks around the numbers).

43
Chapter 5.0	 The DataFrame

It seems that it is a string containing spaces. We can remove whitespace with the
method .strip(), which belongs to the string type. Even though this method is
not directly available to a Pandas Series, they have objects called _accessors_
which let you use functionality from Python’s base types on their strings.
The string accessor can be accessed via the command ‘.str’.

6.0
Indexing and Selecting
Data in Pandas

>>> print(“Hello,”)

45
Chapter 6.0	 Indexing and Selecting Data in Pandas

INDEXING AND SELECTING DATA IN PANDAS

This section is all about how to access specific cells or groups of cells in a dataframe.
It is a key part of data manipulation in Pandas and is core to being able to work
with data in Python.

There are three main ways in which to select data from a dataframe:

[]

The simplest way to select anything from a dataframe is by selecting
`dataframe[‘column _ name’]̀ which returns the entire column (known in
the Pandas library as a `Series`)

.loc

This is primarily label based but may also be used with a boolean array. .loc will
raise a KeyError when the items are not found. Inputs that are allowed include:

•	� a single label, e.g. 5 or ‘a’ (note that 5 is interpreted as an index label –
this use is not an integer position along the index)

•	 a list or array of labels [‘a’, ‘b’, ‘c’]
•	� a slice object with labels ‘a’:’f’ (note that contrary to usual Python slices, both

the start and the stop are included when present in the index – see ‘Slicing
with labels and Endpoints are inclusive’)

•	 a Boolean array (any NA values will be treated as ‘False’)
•	� a callable function with one argument (the calling Series or DataFrame) that

returns valid outputs for indexing (one of the above)

46
DATA SCIENCE IN PYTHON PLAYBOOK

.iloc

This is primarily integer position based (from 0 to length-1 of the axis) but may
also be used with a boolean array. .iloc will raise an IndexError if a requested
indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing
(this conforms with Python/NumPy slice semantics). Allowed inputs are:

•	 an integer e.g. 5
•	 a list or array of integers, e.g. [4, 3, 0]
•	 a slice object with ints, e.g. 1:7
•	 a boolean array (any NA values will be treated as False)
•	� a callable function with one argument (the calling Series or DataFrame) and

that returns valid output for indexing (one of the above)

Worked Examples

A useful variable to know in dataframes is the .columns variable. This is not a
method, which we can see since there are no brackets after the name. It lists all the
columns’ names in our dataframe, which is especially helpful when the list is too
long to see using the ‘.head()’ method!

47
Chapter 6.0	 Indexing and Selecting Data in Pandas

In general, we can select rows and columns in a dataframe using the following
syntax:

48
DATA SCIENCE IN PYTHON PLAYBOOK

49
Chapter 6.0	 Indexing and Selecting Data in Pandas

In essence, the first statement before the comma ‘,’ is what selects the correct
rows of the dataframe, where the second statement is the default character to
‘select all’.

The statement ‘df[‘Date’].str[0:2] == ‘01’’ returns a list of True/False
values, and is what is removing certain rows from the dataframe df, which we can
see below:

Using the ‘.iloc’ function is, in general, simpler, since the data that you wish to
select, corresponds with the values that go inside the row and column’s number.

So, for example, to select the cell in the first row and column in the dataframe, we
would use the following command:

‘df.iloc[0,0]’

50
DATA SCIENCE IN PYTHON PLAYBOOK

Armed with this basic knowledge, we can now figure out relatively complex
calculations such as understanding how much tea one person plucked on the first
day of each month in total, by first selecting the relevant cells and then summing
them all:

...or look at the total amount of tea picked on each day:

Note that since the list is long, Pandas automatically ‘shortens’ the output with
the three dots ‘...’ in between the beginning and end of the object. There are
numerous ways to get around this.

51
Chapter 6.0	 Indexing and Selecting Data in Pandas

…or look at the total amount of tea picked by each worker:

It is possible to identify patterns in the data using clever indexing alone.

An even stronger combination is when it is paired with methods to aggregate data
and plotting functionality, that is also built into Pandas.

One is to convert the object to a list using the ‘list()’ built-in method. Another
is to change how much data Pandas displays by default. This can be done in the
following way:

7.0
Aggregation

>>> print(“Hello,”)

53
Chapter 7.0	 Aggregation

AGGREGATION

The previous cell contained a way to aggregate the data using the method available
to DataFrame. Other standard aggregation functions include:

count(): returns a count of all the values
mean(): returns the average value
std(): retruns the standard deviation
min(): retruns the minimum value
median(): returns the middle value
max(): retruns the largest value

In general, you can see all the methods available to the DataFrame object by
typing ‘df.’ and then pressing [TAB] afterwards. To see what the function does,
select it, then press [SHIFT]+[TAB]+[TAB] inside the brackets ‘()’ of the method for
an explanation.

A very useful method is the ‘.apply()’ method. This allows you to apply
functions that you created yourself to the entire dataset.

For example, let’s say that we want to sum all the amounts of tea for each day, but
only the values where the amount picked was larger than 30kg.

54
DATA SCIENCE IN PYTHON PLAYBOOK

To accomplish this, we can use a function that takes an individual row and sums
it, on the condition that the value is above 30, then apply this function to each row
in the dataframe:

55
Chapter 7.0	 Aggregation

Now we can apply this function to the entire dataframe in one line without
having to do a loop using ‘apply()’. Don’t be intimidated by the code
‘lambda x:’ at the beginning of the apply arguments. This just means
‘take every row and put it through my function’.

Success!

8.0
Plotting

>>> print(“Hello,”)

57
Chapter 8.0	 Plotting

PLOTTING

Basic - Series Plots

Once data has been selected and aggregated properly, there are many ways to plot
something and often it is as simple as calling one method!

Historically, the most popular library is called ‘Matplotlib’, though there are
new competitors coming up such as ‘seaborn’. But for the most basic plots, Pandas
has its own plotting methods in order to quickly visualise data.

To start, let us visualise the total amount of tea plucked by the workers with a
histogram:

To create a graph, it was as simple as calling the ‘hist()’ method which could be
found by pressing [SHIFT]+[TAB], and by pressing [SHIFT]+[TAB]+[TAB] inside the
brackets of the method, where it is possible to find the ‘bins’ parameter and use it
to change the width of each bar.

58
DATA SCIENCE IN PYTHON PLAYBOOK

Other out-of-the-box data plot methods from the Pandas library includes
‘.plot()’ which is a method for both Series and DataFrames and contains the
following plots:

•	 ‘line’: line plot (default)
•	 ‘bar’: vertical bar plot
•	 ‘barh’: horizontal bar plot
•	 ‘hist’: histogram
•	 ‘box’: boxplot
•	 ‘kde’: kernel density estimation plot
•	 ‘density’: same as ‘kde’
•	 ‘area’: area plot
•	 ‘pie’: pie plot
•	 ‘scatter’: scatter plot
•	 ‘hexbin’: hexbin plot

Some examples are shown below:

59
Chapter 8.0	 Plotting

60
DATA SCIENCE IN PYTHON PLAYBOOK

Dataframe Plots

What if we wanted to visualise the data of the entire dataframe in some way?
We can also do this using the ‘.plot()’ method.

Let’s start by converting the ‘Date’ column to a ‘datetime’ type, so that Pandas can
understand and plot it:

Now we can plot this dataframe. Let’s plot a time series, displaying each column as
a different line (see next page):

61
Chapter 8.0	 Plotting

This is interesting, but hard to read since there are so many workers. We can try
to analyse the correlation between each column and pick the ones with the least
correlation in order to find the ‘interesting’ workers:

62
DATA SCIENCE IN PYTHON PLAYBOOK

We can already see that Elizabeth Machumari has a low correlation with many
other workers. We can therefore conclude her tea picking is very different to the
rest of the workers. Let’s plot to see how!

63
Chapter 8.0	 Plotting

9.0
Introduction to Machine
Learning Models

>>> print(“Hello,”)

65
Chapter 9.0	 Introduction to Machine Learning Models

INTRODUCTION TO MACHINE LEARNING MODELS

We will very quickly cover the most basic machine learning model – a linear
regression model – which predicts how many kilograms of tea we expect to
harvest every day based on the data provided.

Note this will not consider external factors such as weather, season, time of year,
etc. That will come later!

First, let us rearrange our data into something that we can use. We only want a list
of numbers to make our prediction on, so let’s sum over all the different workers,
make it a cumulative sum, and remove the date index since we don’t really need
that here.

Great! So how do we put this data into a model?

66
DATA SCIENCE IN PYTHON PLAYBOOK

Sklearn.
Remember when we said that there are libraries which make our lives easier?
Well now is when we really start to see their benefits.

Sklearn has a specific function that is slightly different to Pandas, in that we must
create an object before we can train it, rather than call everything at once like in
Pandas.

Our approach will look like this:

•	� split the dataset up into two chunks: one to train the data on (that the model
will see) and one to test the data (that the model will not see), and make all of
our evaluation metrics with, including mean absolute error, root mean
squared error, etc

•	 create a model object
•	 train the model
•	 test the model on the unseen data

Done! Wasn’t that simple?

67

Now we can test the model and compare it to the real values in our test set:

Chapter 9.0	 Introduction to Machine Learning Models

68
DATA SCIENCE IN PYTHON PLAYBOOK

On first appearances, it doesn’t look great! So, let’s add this test data back into the
train data to see why the results may look like this:

69
Chapter 9.0	 Introduction to Machine Learning Models

Now that we can see the full picture of what’s going on in the model, we can
understand why it may have performed so badly! Overall, the model fits the
training data as expected, however since the model is only linear, it does not have
the required complexity to model the drop-off in production which happens
towards the end of the data.

So how do we fix this?

Become a data scientist.

10.0
Can We Make a Model
That Accurately Predicts
the Amount of Tea
Plucked in Advance?

>>> print(“Hello,”)

71
Chapter 10.0	 Can We Make a Model That Accurately Predicts the Amount of Tea Plucked in Advance?

CAN WE MAKE A MODEL THAT ACCURATELY PREDICTS THE
AMOUNT OF TEA PLUCKED IN ADVANCE?

Weather Data

We will be using weather data which has already been extracted via an API and
saved as a .csv file. This makes our lives a little easier today, but in practice you
will have to connect to an API to fetch this data. How to do this is covered in the
interoperability workshops!

Weather data exploration - recap of previous lessons learnt
We should make a habit of exploring every new data set that we acquire in order to
get a ‘feel’ for it, as this will inform us later in the modelling stage as to what is
sensible to do and what isn’t.

Why do we do data exploration if we can blindly throw data into a model?
The reason is that if you blindly throw data into a model, there will be no
understanding of the outputs, and no understanding of how to improve the
model! If the results are bad, that will be it: if they are good, that will be it. This
is bad for you, or for anyone else that must trust the results your model is giving
you – how can something be trusted if it is not understood?

Think of it like throwing darts whilst wearing a blindfold. Sure, you might hit the
bullseye, but are you maximising your chances of doing so? Definitely not!

Description of remainder of the case study
We will be continuing with the Mapera Farm dataset; this time by focusing on the
process in order to reach something useful. We’ll also start with just two datasets,
rather than describing the meaning of different bits of Python syntax.
Our three datasets that we will use in this course will be:

•	 the weather for the region the tea was plucked in using actual historical data
•	� the weather for the region the tea was plucked in using the daily average over

the last 30 years
•	 the amount of tea plucked

72
DATA SCIENCE IN PYTHON PLAYBOOK

First, we will explore the datasets we haven’t seen before – Weather Data:

73
Chapter 10.0	 Can We Make a Model That Accurately Predicts the Amount of Tea Plucked in Advance?

74
DATA SCIENCE IN PYTHON PLAYBOOK

Okay... so it may look pretty but studying this much data at once doesn’t realistically
help us to understand what is happening. At this point we have a few options:

•	� view fields one by one so we don’t lose the ability to see data due to
scaling/overlapping issues

•	� create an interactive plot so we can scroll and zoom across the data more easily
•	 transform the data into a format which is easier to work with

Since our tea-plucking numbers are measured by day, and this data is hourly, we
should transform our weather data into daily values.

Let’s define what we want to do for each of the features we’ve selected:

•	 date : we only want the first value, since they’re all the same
•	� gust : sum (there are many null values, so if we took an average, a single gust

would equal a day of gusting)
•	 uvIndex : sum (we want to know the total amount of sun that the tea gets)
•	 temperature : average (we want to know the daily average temperature)
•	 precip1hour : sum (we want to know how much it rained in total that day)
•	 windspeed : average (we want to know the average windspeed of the day)

To achieve this, we use the ‘groupby()’ method (it has not been explicitly
introduced in this course however is available in the Pandas’ API documentation,
followed by the ‘agg()’ method).

75
Chapter 10.0	 Can We Make a Model That Accurately Predicts the Amount of Tea Plucked in Advance?

76
DATA SCIENCE IN PYTHON PLAYBOOK

This looks like valuable information which would improve our model. The last
values in ‘uvIndex’ and ‘temperature’ seem to look like data errors and
may clip the dataset.

77
Chapter 10.0	 Can We Make a Model That Accurately Predicts the Amount of Tea Plucked in Advance?

Weather Data API

Another source of data is an API which gives us the average daily temperature and
precipitation on that day for the last 30 years combined. Let’s tap into this and use it!

Now, we’ll create some code which cycles through all our days and months and
calls the weather API to return the previous values. This step may take some time,
since calling an API is a time-consuming process, but once finished, we’ll have the
average temperature and rainfall values on a particular day for the last 30 years!

78
DATA SCIENCE IN PYTHON PLAYBOOK

79
Chapter 10.0	 Can We Make a Model That Accurately Predicts the Amount of Tea Plucked in Advance?

Reading in Mapera Farm Data

Notice how in using this version of the data, we can immediately see why our
linear regression model struggled to accurately predict towards the end of the
dataset: there was a clear downward trend in the amount of tea picked due to the
seasons changing!

Also, is there a monthly trend? It looks like every fourth week, the amount plucked
is lower than the previous three weeks. Let’s plot weekly aggregates to see if this
helps clear things up for us.

The first question that comes to mind is whether the number of workers (and
specific workers) impacts the amount picked? If we can draw a correlation here,
then it isn’t so much about how fast the tea grows, but how effective the workers
are at their job!

Looking at Daily Mapera Farm Production

80
DATA SCIENCE IN PYTHON PLAYBOOK

81
Chapter 10.0	 Can We Make a Model That Accurately Predicts the Amount of Tea Plucked in Advance?

We can see that there is a high correlation between the number of workers and the
amount picked. But how far in advance do we know the number of workers we’ll
have?

Also, the correlation breaks down in the most significant times: in the middle of the
dataset when there is the most amount of tea to pick, and at the end of the dataset
when even though there is a consistent workforce, not much tea has been picked.

Let’s look at weekly production:

There does appear to be a very clear pattern, whereby every month, there is a week
in which production is low. We need to keep this in mind if we build a model, since
our predictions will be more accurate with it than without!

Another thing is that the first and last weeks have a very low production rate. It is
suspected that this is because of the way in which we have collected our data – the
first and last weeks will be half-weeks which makes the values look unrealistically
low.

If this is the case, then we should remove these weeks from our dataset since they
do not fit the norm, and if our final model has a weekly component, then these
weeks will suffer for it.

Also, what happened in week 22? Was this an anomaly? Or was it a legitimate
amount of tea that was produced but not collected in the previous week?
Understanding these questions can lead us to a more robust model.

82
DATA SCIENCE IN PYTHON PLAYBOOK

Understanding why week 22 had such a large output:
Viewing the data below, we can immediately see that there was no ‘rest’ day in
week 22. Tea was picked every day of the week.

This is either a mistake or there is a justifiable business-related reason for this,
however:

•	 if there isn’t a good reason, it shouldn’t be in our model
•	� if there is a good reason, then we need to understand why this week had no

break. Was it the end of the season? Was there an abnormally high amount
of tea grown that week?

•	� if we understand the cause, then we can adapt our model for more accurate
predictions.

83
Chapter 10.0	 Can We Make a Model That Accurately Predicts the Amount of Tea Plucked in Advance?

Modelling

Developing a good model is an interactive approach. There should be a lot of trial
and error in the process, backed up with logical, reasonable assumptions about
both the data and the models used.

The steps taken in the modelling approach are generally as follows:

•	� develop a baseline model using what we have learnt in the data
exploration stage

•	 see if we can improve on the baseline model

That’s it!
So, to start, let’s develop a baseline.

Baseline Model

A baseline model needs to be the most accurate thing that can be done in a short
amount of time. Whatever that may be. The point of a baseline model is to have a
reference point from which to benchmark your future models against, so that you
know how well you are doing in comparison to something else. It is very difficult
to understand how much better you have done if you don’t have a reference point.

In some cases, a baseline model will just be the accuracy that is provided by
competitors or other people. This is certainly the case in research. However, since
there is nobody else modelling this problem, we will have to create our own.

84
DATA SCIENCE IN PYTHON PLAYBOOK

Prophet
Three years ago, Facebook open-sourced a time-series prediction model of theirs
called Prophet, and since then it has been widely accepted as a great out-of-the-box
time series forecasting model. We may have more control over other models and
there may be more complex modelling techniques which allow for higher overall
accuracy, but as a starting point for a baseline model, this is exactly what we are
looking for.

To start, we download it and install the library. In this case the library depends on
another, called PyStan, so we download and install that one first (I hope you are
getting used to this by now!).

The easiest way to download Prophet is to use conda-forge, which is an alternative
way of downloading libraries (basically a competitor to pip).

The command for this is ‘!conda install -c conda-forge fbprophet’.
If you are having trouble with getting this to work, then try opening the Anaconda
terminal in administrator mode.

Now we just follow our steps to get to a model:

•	 create a train and test set
•	 create the model object and train it with the training data
•	 make predictions using the trained model
•	 merge the predictions back to our original dataset
•	 visualise the predictions and calculate accuracy metrics (mean absolute error)

85
Chapter 10.0	 Can We Make a Model That Accurately Predicts the Amount of Tea Plucked in Advance?

86
DATA SCIENCE IN PYTHON PLAYBOOK

It doesn’t look awful!

Let’s use a metric to characterise our accuracy, or the mean absolute error. This
way, we’ll be able to know how many kilograms ‘off’ we are in our predictions, and
to know immediately if our new model has improved on our baseline!
To calculate the mean absolute error, the equation is simple:

(P.s. our baseline predicts negative quantities for the days where there’s meant to
be zero – let’s just fix this by adding a floor to our predictions).

[predictions – actuals]

samples

87
Chapter 10.0	 Can We Make a Model That Accurately Predicts the Amount of Tea Plucked in Advance?

Introducing Weather Data into the Model

With weather data, the idea is that we can explain the differences in tea plucked
and therefore capture more of the nuances in the dataset, rather than relying
entirely on previous prices. However, we need to be careful about how we use this
data; if it isn’t known more than one day in advance then we could be training a
model using something that won’t be available a month in advance.

We can also generate features from the individual workers on the farm. It may be
that certain workers influence the total amount of tea picked in a given day.

We can add more variables to Prophet using the ‘add regressor’ option:

88
DATA SCIENCE IN PYTHON PLAYBOOK

Now this is starting to look like a real model! A lot of detail has been added here,
and the best part is that the model hasn’t been trained on the last four weeks of
data, so this is what our test case looks like!

89
Chapter 10.0	 Can We Make a Model That Accurately Predicts the Amount of Tea Plucked in Advance?

Let’s add a floor to the data and see what our mean absolute error is now. In order
to be fair, we take the floor of the test dataset, rather than the entire dataset, as the
model has seen the entire training set before.

Next Steps
Next steps would be to understand where our model breaks down. There are
significant cases where tea production is higher than expected, so it could be that
a further combination of features derived from the weather data would illuminate
this situation.

90
DATA SCIENCE IN PYTHON PLAYBOOK

Notes

Publisher
Deutsche Gesellschaft für
Internationale Zusammenarbeit (GIZ) GmbH

Tech Entrepreneurship Initiative
“Make-IT in Africa”

Registered offices
Bonn and Eschborn

Friedrich-Ebert-Allee 32 + 36
53113 Bonn / Germany
T +49 228 44 60-0
F +49 228 44 60-17 66

Dag-Hammarskjöld-Weg 1-5
65760 Eschborn / Germany
T +49 61 96 79-0
F +49 61 96 79-11 15
E info@giz.de
I www.giz.de

Authors
Sergei Batishchev
Marc Hümmer
Silas Macharia
Desiree Winges

Editor
creative republic/David Steel

Design
creative republic, Frankfurt a. M. / Germany

Illustrations
© shutterstock & creative republic

GIZ is responsible for the content
of this publication

On behalf of the
German Federal Ministry for Economic
Cooperation and Development (BMZ)

As of
December 2020

mailto:info%40giz.de?subject=
http://www.giz.de

