
Implemented by

The Interoperability Playbook
How to integrate into a platform

Interoperability Playbook
How to integrate into a platform

4
INTEROPERABILITY PLAYBOOK

Contents

Contents .. 4

1.0 Interoperability – Basic ... 6
 Benefits of APIs .. 7
 API Endpoints ... 8
 Dog CEO API .. 9
 API Call .. 9
 API Keys ...10
 HTTP Status Response Codes ...11

2.0 Interoperability – Intermediate ..12
 Introduction to Postman ..13
 Install Postman ..14
 API Exploration with Postman ..14
 Rest and SOAP APIs ...15
 Guiding Principles of REST ..16
 Why JSON? ..17
 Parsing JSON ..18
 HTTPS Methods ...19

3.0 Interoperability – Masterclass ...20
 An API Approach ...21
 API Platforms ..22
 Principles of API Integration ... 24
 API Design Principles ... 24
 API Design ...25
 Documentation ..25
 Streaming Data ...26
 Benefits of Data Streaming Integration ..27
 Data Streaming Integration Components ..28
 Key Building Blocks of Data Streaming Integration ..28
 MQTT ...29

5
Contents

 MQTT Architecture ...30
 MQTT vs. HTTP..30
 Why MQTT? ...31
 MQTT DEMO – Health and Safety IoT ...32
 Graph QL ..33
 Data Fetching with GraphQL ..33
 GraphQL vs. REST ...34
 GraphQL Development...34
 GraphQL Schema Definition Structure ...34
 What are Webhooks? ...35
 Webhooks vs. APIs – Restaurant Example ...36

Annex ...40
 Weather Data Packages ..41
 Available Packages for Testing..42
 Weather API´s Documentation Structure ... 44
 Weather API Documentation Links ..45
 Weather API Integration Case Studies ...47

Imprint ...48

1.0
Interoperability – Basic

7
Chapter 1.0 Interoperability – Basic

Benefits of APIs

Application: APIs can access the app components, meaning that the delivery
of services and information is more flexible.

Efficiency: When access is provided for an API, the content generated can be
published automatically and is available for every channel. It allows it to be shared
and distributed more easily.

Adaptation: Needs change over time, and APIs help to anticipate changes. When
working with this technology, data migration is better supported, and the information
is reviewed more closely. In short, APIs make service provision more flexible.

Scope: With an API, an application layer can be created and used to distribute
information and services to new audiences, which can be personalised to create
custom user experiences.

Integration: APIs allow content to be embedded from any site or application more
easily. This guarantees more fluid information delivery and an integrated user
experience.

Automation: With APIs, computers rather than people can manage the work.
Through APIs, agencies can update workflows to make them quicker and more
productive.

Personalisation: Through APIs any user or company can customise the content
and services that they use the most.

1 2 3

What is an API?
Am application program-

ming interface (API) is
a computing interface -

a shared boundary between
multiple software parties.

What do APIs do?
The API defines the

interactions between the
software, by specifying:

• The kinds of calls or
requests that can be made

• How to make the request
• The data formats to use
• The conventions (protocols)

to follow, etc.

Why do we use APIs?
APIs simplify programming

by abstracting the
underlying implemenation

and only exposing objects or
actions the developer needs.

GET/POST/
PUT/DELETE

Client Rest API

{…}

DatabaseJSON/XML

8
INTEROPERABILITY PLAYBOOK

API Endpoints

An API endpoint is basically a fancy word for a URL of a server or service. In
simple terms, an API endpoint is the point of entry in a communication channel
when two systems are interacting. It refers to touchpoints of the communication
between an API and a server. The endpoint can be viewed as the means from
which the API can access the resources it needs from a server to perform their
task.

E.g. in the below API, this endpoint returns a random image from any dog breed:

https://dog.ceo/api/breeds/image/random

We all know that APIs operate through requests and responses. And when an API
requests to access data from a web application or server, a response is always sent
back. The location where the API sends a request and where the response emanates
is what is known as an endpoint.

The endpoint is the most crucial part of the API documentation since it’s what the
developer will implement to make their requests. Endpoints help to depict the
exact location of the resources to be accessed by the API and play a vital role in
ensuring that the software, which is interacting with the API is functioning correctly.

An API refers to a set of protocols and tools that allow interaction between two
different applications. In simple terms, it is a technique that enables third-party
vendors to write programmes that can easily interface with each other.

Furthermore an endpoint is the place of interaction between applications.
API refers to the whole set of protocols that allows communication between
two systems, while an endpoint is a URL that enables the API to gain access to
resources on a server.

https://dog.ceo/api/breeds/image/random

9
Chapter 1.0 Interoperability – Basic

Dog CEO API

All endpoints use the https://dog.ceo/api/ part of the url:

- some use the image resource, e.g. https://dog.ceo/api/breeds/image/random
- some use the list resource, e.g. https://dog.ceo/api/breeds/list/all

The API documentation can be found here:
https://github.com/ElliottLandsborough/dog-ceo-api

API Call

What is an API Call?
The moment you add an endpoint to a URL and send a request to a server, this is
what counts as making an API call. For example, when you log on to any app or
ask a question via a browser, you are making an API call.

In a nutshell, an API call is a process that takes place when you send a request after
setting up your API with the correct endpoints. Your information is transferred,
processed, and feedback is returned.

Using the previous example:
https://dog.ceo/api/breeds/image/random
The moment you enter this URL into your browser address window and press
enter, you have made an API call.

https://dog.ceo/api/
https://dog.ceo/api/breeds/image/random
https://dog.ceo/api/breeds/list/all
https://github.com/ElliottLandsborough/dog-ceo-api
https://dog.ceo/api/breeds/image/random

10
INTEROPERABILITY PLAYBOOK

API Keys

An API key, or application programming interface key, is a code that gets passed
in by computer applications. The programme or application then calls the API
or application programming interface to identify its user, developer, or calling
programme to a website.

Application programming keys are normally used to assist in tracking and
controlling how the interface is being utilised. Often, it does this to prevent abuse
or malicious use of the API in question.

An API key can act as a secret authentication token as well as a unique identifier.
Typically, the key will come with a set of access rights for the API that it is associated
with.

API keys increase security, enable you to monitor usage of your API, and prevents
abuse of API endpoints by limiting who can access them.

11
Chapter 1.0 Interoperability – Basic

HTTP Status Response Codes

HTTP status codes give you information about the request you have submitted
and indicates success or failure.

All the Weather Company’s APIs are REST web APIs and use HTTP as the
communication protocol.

The most frequently used method for the Weather Company’s APIs, is GET.
The HTTP status code descriptions can be found in the Weather Company API
Common Usage Guide: https://ibm.co/APICom

v2/v3 API - HTTP
Status Code

Description

200 Success.

204 Data Found for Specific Query. The 204 status Sode will have an empty
response body.

400 Bad Request. The request could not be understood by the server due to
malformed syntax. This is implemented for all API’s. API will reject the
request if any invalid parameters are supplied.

401 Unauthorised. The request requires authentication.

403 Forbidden. The server understood the request but the API key is not
authorised to perform the requested operation.

404 Not Found. The endpoint requested is not found.

405 Method Not Allowed. For example, sending a POST instead of a GET.

406 Not Acceptable. For example, not accepting gzip compressed
responses.

408 Request Timeout. Client did not produce a request within the time
server was willing to wait.

500 Internal Server Error. The server encountered an unexpected condition
which prevented it from fulfilling the request.

502-504 Service Unavailable Or Gateway Issue. These error codes are returned
if the service is temporarily unavailable.

https://ibm.co/APICom

2.0
Interoperability –
Intermediate

13
Chapter 2.0 Interoperability – Intermediate

Introduction to Postman

Postman is a collaboration platform for API development.

It is also an API client that enables you to quickly send API requests directly
within Postman.

Collections
In Postman, collection refers to a group of API requests that are already saved
in the Postman and can be arranged into folders. Any number of folders can be
created inside a collection.

Putting similar requests into folders and collections helps the client with better
organisation and documentation of their requests.

All the API’s requests can be stored and saved within a collection, and these
collections can be shared amongst the team in the Postman workspace.

Environments
A collection of key-value pairs is called an environment. Each name of the
variable represents its keys and referencing the name of the variable allows you
to access its value.

Variables
Postman variables work in the same way as programming variables. You can
store the values in variables and can use it throughout in requests, environments,
collections and scripts.

Variables in Postman increase the user’s efficiency to work and decrease the
errors.

You use variables by putting the name of the variable in double curly brackets:
{{variable_name}}

14
INTEROPERABILITY PLAYBOOK

Install Postman

Postman is a collaboration platform for API development.
It is also an API client that enables you to quickly send API requests directly
within Postman. That is mainly how we will use it in this course.

Installation Instructions
If you haven’t already installed it, here are the installation instructions. Please
install it now!

1. Go to https://www.postman.com/downloads/
2. Click on ‘Download the app’
3. Download the right native app for your platform

API Exploration with Postman

Import a Postman Collection and Environment:

1. Download and unzip the D4A Interop Intermediate - Masterclass.zip file
2. Open Postman
3. In the top left-hand corner, click ‘Import’
4. Choose ‘Upload Files’
5. Navigate to the GIZ_Postman folder and select all JSON files for import
6. Click ‘OK’
7. A set of collections (folders) should appear on the left-hand side

Useful Links
Visualising GeoJSON files: http://geojson.io/

https://www.postman.com/downloads/
http://geojson.io/

15

Rest and SOAP APIs

REST vs. SOAP Characteristics

SOAP APIs
SOAP has three primary characteristics:

Extensibility – The protocol allows for extensions that introduce more
powerful features.

Neutrality – SOAP can operate over a wide range of protocols like UDP, JMS,
SMTP, TCP, and HTTP.

Independence – Just about any programming language can use SOAP.

However, you may not use JSON with SOAP. The protocol is strict and the
only option for data is XML. It’s for this reason alone that just about everyone
recommends REST instead of SOAP. JSON is easier to work with than XML,
so REST becomes the preferred option.

Chapter 2.0 Interoperability – Intermediate

[Simple Object Access Protocol] is
a messaging protocol used for
exchanging structured information
[XML data] over a network.

[REpresentational State Transfer]
is a standardised architectural style
that can be used when creating a
web API.

SOAP REST

16
INTEROPERABILITY PLAYBOOK

REST APIs
REST is not a protocol, a tool, or library, but rather an architectural style of web
service that provides a channel of communication between systems or computers
on the internet.

Implementation – Convenient with JavaScript and allows easy implementation

Flexibility – Can use several standards like HTTP, URL, JSON, and XML

Bandwidth – Uses less bandwidth and resources since it deploys multiple standards

Data is not constrained to resources or methods. Therefore, it can make multiple
types of calls and return various data formats.

Guiding Principles of REST

Client–server – By separating the user interface concerns from the data storage
concerns, we improve the portability of the user interface across multiple
platforms and improve scalability by simplifying the server components.

Stateless – Each request from client to server must contain all the information
necessary to understand the request, and cannot take advantage of any stored
context on the server. Session state is therefore kept entirely on the client.

Cacheable – Cache constraints require that the data within a response to a request
be implicitly or explicitly labelled as cacheable or non-cacheable. If a response is
cacheable, then a client cache is given the right to reuse that response data for
later, equivalent requests.

Uniform interface – By applying the software engineering principle of generality
to the component interface, the overall system architecture is simplified, and the
visibility of interactions is improved. REST is defined by four interface constraints:
identification of resources; manipulation of resources through representations;
self-descriptive messages; and, hypermedia as the engine of application state.

17
Chapter 2.0 Interoperability – Intermediate

Layered system – The layered system style allows an architecture to be
composed of hierarchical layers by constraining component behaviour, such
that each component cannot “see” beyond the immediate layer with which
they are interacting.

Code on demand (optional) – REST allows client functionality to be extended by
downloading and executing code in the form of applets or scripts. This simplifies
things for clients by reducing the number of features required to be pre-implemented.

Why JSON?

JSON is based on the object notation of JavaScript. However, it does not require
JavaScript to read or write because it is made in text format, which is language
independent and can be run everywhere.

Fast and lightweight
JSON syntax is very easy to use. Since its syntax is very small and lightweight it
parses and executes responses faster than XML.

Human-readable
A chunk of JSON text can be made easily readable and understandable even for
non-programmers.

Versatile for data exchange
JSON is a text format that is completely language independent but uses conventions
that are familiar to programmers of the C-family of languages, including C, C++,
C#, Java, JavaScript, Perl, Python, and many others. These properties make JSON
an ideal data-interchange language.

https://www.json.org/json-en.html

18
INTEROPERABILITY PLAYBOOK

Parsing JSON

The word parsing can be used to mean interpreting. Parsing JSON means interpreting
the data with the specific language that you are using at that moment. JSON is
usually read as a string called the JSON string. This is a string that follows the
specifications of JSON. When we parse JSON, it means we are converting the string
into a JSON object by following the JSON specification, where we can then use it in
any way we wish.

Before parsing JSON, you only have a regular string that you cannot access the
data encoded within. After parsing, it is converted into a JavaScript object where
that allows you to access the various data inside. Therefore, parsing JSON is a
method of making it more accessible than it is before parsing.

19

HTTPS Methods

GET
GET is used to retrieve and request data from a specified resource in a server. GET
is one of the most popular HTTP request techniques. In simple words, the GET
method is used to retrieve whatever information is identified by the Request-URL.

HEAD
The HEAD technique requests a reaction that is like the GET request but doesn’t
have a message-body in the response. The HEAD request method is useful in
recovering meta-data that is written according to the HTTP headers, without
transferring the entire content. The technique is commonly used when testing
hypertext links for accessibility, validity, and recent modification.

POST
Another popular HTTP request method is POST. In web communication, POST
requests are utilised to send data to a server to create or update a resource. The
information submitted to the server with the POST request method is archived in
the request body of the HTTP request. The HTTP POST method is often used to
send user-generated data to a server. One example is when a user uploads a profile
photo.

Chapter 2.0 Interoperability – Intermediate

3.0
Interoperability –
Masterclass

21
Chapter 3.0 Interoperability – Masterclass

An API Approach

APIs are a core building block of digital businesses. They enable a company to
leverage existing assets and make them available in a variety of ways.

An API can become the primary entry point for enterprise services, for its own
website and applications, as well as for partner and customer integrations. Some of
the key areas that are driving API adoption are:

• Supporting mobile applications and enterprise app stores through APIs while
hiding the complexity of underlying systems

• Extending business functionality and systems into the developer eco-system to
drive development of apps with cloud and social mashups, which in turn fosters
innovation

• Embracing APIs as a form of new revenue streams

USERS

customers
partners

developers
internal users

DEVICES

tablets
handsets
dekstops

CHANNELS

in-store
online

call-centre
phone

22
INTEROPERABILITY PLAYBOOK

API Platforms

APIs are best served through a platform that supports design, development,
deployment, operations, and support. The platforms can be based on conventional
(hosted, in-premise, or on cloud) as well as a pay-as-you-go cloud model.

An API platform is an API infrastructure that is ready to build and run APIs with
minimum features and common services required of web APIs; with elements of
the tech stack that digital enterprises need, such as caching and security, and
preferably with a built-in support for API development and management. Ideally,
it is configured in the standard way and validated.

CREATE

SECURE

MANAGE

RUN

23

An API platform comprises of API layer, API governance, API design time
components, API discovery and documentation etc., as well as the ability to
address varied demands on security, performance, governance, stability, flexibility
and agility.

Examples of API platforms include Sencha, Mashery, MuleSoft and IBM App
Connect, each catering to a different level of enterprise and developer needs.

Chapter 3.0 Interoperability – Masterclass

CREATE

SECURE

MANAGE

Create
Develop and write the API definition and implementation, and test
the API

Manage
Create and manage self-service portals that expose the API to API
consumers. Monitor the set of rules and conditions that govern the API
to ensure it is fulfilling its intended purpose, and make adjustments if
necessary. Retire and archive the API when appropriate.

Run
Package and deploy the API. Ensure that the API is hosted securely on a
stable platform.

Secure
Incorporate access control, monitoring, and logging to properly secure
the API.

RUN

24
INTEROPERABILITY PLAYBOOK

Principles of API Integration

When you are looking at integrating APIs into your solution, there are a few
things to think about:

• Why are you looking to integrate this API?
• What’s the value it adds to your business or your users?
• What will the API enable that you are not currently able to do?
• What costs will be associated with the API – both initial costs of integration,

and ongoing costs of any licenses?
• What dependencies are you building into your solution by integrating this API?
• Does it drive revenue?
• Does it improve customer experience?
• Does it reduce costs or improve efficiencies?

API Design Principles

Think about it the way you think about an everyday object. Have empathy with your
end user, and understand the context that you will be implementing the API in.

Purpose
• What is the purpose – what is it that your users want to do with the API?
• How complicated is your interface?
• Only expose the internal workings of your API when it makes sense to the user

Usability
• Name APIs and parameters in a straightforward manner
• Only request minimal and straightforward inputs
• Aggregate actions to minimise additional steps
• Make your API consistent in itself; consistent across the organisation, standards,

and common practices

Constraints
• Design for your user context, e.g. latency over mobile networks
• Understand the kind of calls clients want to make (batch/bulk)

25

API Design

Designing APIs
If you are looking at an API-first business, you should also start looking at how you
design APIs.

Your API is the first and most important way to access and interact with your product,
the API needs to be managed and designed deliberately. Just as you spend time on
designing your graphical user interface, invest time to design your API: what it
exposes, what it does, and how it grows.

Your implementation will change as your application evolves and you optimise,
refactor and grow the functionality. Your API, however, should not change fre-
quently, but instead grow slowly and deliberately.

Documentation

Your API needs to be easily understood by people that have not been involved in
its creation. That means documentation.

Usable API documentation is an essential prerequisite to making it consumable
by humans.

When it comes to documentation for APIs, create structured documentation.
Follow a standard pattern for URLs, resource types, request methods, headers,
request parameters, and response formats. This will make it easier to explore and
understand functionality.

Chapter 3.0 Interoperability – Masterclass

26
INTEROPERABILITY PLAYBOOK

Streaming Data

Streaming data refers to data that is continuously generated, usually in high
volumes, and at high velocity. A streaming data source would typically consist of a
stream of logs that record events as they happen – such as a user clicking on a link
in a web page, or a sensor reporting the current temperature.

Common examples of streaming data include:

• IoT sensors
• Server and security logs
• Real-time advertising
• Click-stream data from apps and websites

In these cases, we have end devices that are continuously generating thousands
or millions of records, forming a data stream – unstructured or semi-structured –
and are most commonly JSON or XML key-value pairs.

A single streaming source will generate massive amounts of these events every
minute. In its raw form, this data is very difficult to work with as the lack of
schema and structure makes it difficult to query with SQL-based analytic tools;
instead, data needs to be processed, parsed, and structured before any serious
analysis can be done.

27

Benefits of Data Streaming Integration

• Able to deal with never-ending streams of events—some data is naturally
structured this way. Traditional batch processing tools require stopping the
stream of events, capturing batches of data, and combining the batches to draw
overall conclusions. In stream processing, while it is challenging to combine
and capture data from multiple streams, it lets you derive immediate insights
from large volumes of streaming data.

• Real-time or near-real-time processing—most organisations adopt stream
processing to enable real time data analytics. While real time analytics is also
possible with high performance database systems, often the data lends itself to
a stream processing model.

• Detecting patterns in time-series data—detecting patterns over time, for example
looking for trends in website traffic data, requires data to be continuously
processed and analysed. Batch processing makes this more difficult because it
breaks data into batches, meaning some events are broken across two or more
batches.

• Easy data scalability—growing data volumes can break a batch processing system,
requiring you to provision more resources or modify the architecture. Modern
stream processing infrastructure is hyper-scalable and able to deal with gigabytes
of data per second with a single stream processor. This allows you to easily deal
with growing data volumes without infrastructure changes.

Chapter 3.0 Interoperability – Masterclass

28
INTEROPERABILITY PLAYBOOK

Data Streaming Integration Components

Key Building Blocks of Data Streaming Integration

1. The Message Broker / Stream Processor
This is the element that takes data from a source, called a producer, translates
it into a standard message format, and streams it on an ongoing basis. Other
components can then listen in and consume the messages passed on by the broker.
Apache Kafka is a popular open source solution.

2. Batch and Real-time ETL (extract-transform-load) Tools
Data streams from one or more message brokers need to be aggregated, transformed,
and structured before data can be analysed with SQL-based analytics tools. This
would be done by an ETL tool or platform that receives queries from users, fetches
events from message queues, and applies the query to generate a result – often
performing additional joins and transformations on aggregations on the data. The
result may be an API call, an action, a visualisation, an alert, or in some cases a
new data stream. A few examples of open-source ETL tools for streaming data are
Apache Storm, Spark Streaming and WSO2 Stream Processor.

STREAMING DATA

SOURCES

STREAM

PROCESSOR
e.g. Apache Kafka

DATA INGESTION

ETL TOOLS
• Batch

• Real-time

DATA STORAGE
• Database

• Message broker

• Data lake

DATA ANALYTICS
E.g. Cassandra

ElasticSearchApp Activity

loT / Sensors

Clickstream

Server logs

Online
advertising

29
Chapter 3.0 Interoperability – Masterclass

3. Data Analytics / Serverless Query Engine
After streaming data is prepared for consumption by the stream processor, it must
be analysed to provide value. There are many different approaches to streaming
data analytics. Some of the most commonly used tools for streaming data analytics
are Elasticsearch and Cassandra.

4. Streaming Data Storage
Given the low cost of storage, most organisations today are storing their streaming
event data. This can be done in a database or data warehouse, in the message
broker, or in a data lake.

MQTT
MQTT is an open messaging protocol for the Internet of Things (IoT). It is designed
as an extremely lightweight publish/subscribe messaging transport that is ideal
for connecting remote devices with a small code footprint and minimal network
bandwidth.

MQTT is no longer considered an acronym – it is simply the name of the protocol.

MQTT is used in a wide variety of industries, such as automotive, manufacturing,
telecommunications, oil and gas, etc.

30
INTEROPERABILITY PLAYBOOK

MQTT Architecture

MQTT vs. HTTP

It is different to HTTP in that a client doesn’t have to pull the information it
needs, but the broker pushes the information to the client, in the case that there
is something new.

Therefore, each MQTT client has a permanently open connection to the broker.
If this connection is interrupted by any circumstances, the MQTT broker can
buffer all messages and send them to the client when it is back online.

As mentioned before, the central concept used in MQTT to dispatch messages,
are topics.

A topic is a simple string that can have more hierarchy levels, which are separated
by a slash. A sample topic for sending temperature data of the living room could
be house/living-room/temperature.

MQTT CLIENT MQTT BROKER MQTT CLIENT

MQTT CLIENT

Publisher:
Temperature Sensor

subscribe to topic:
speed

subscribe to topic:
speed

Subscriber:
Mobile devixe

Subscriber:
Backend system

publish: 24°C

publish: 24°C

publish to topic:
temperature

publish: 24°C

31
Chapter 3.0 Interoperability – Masterclass

The client can subscribe to the exact topic or use a wildcard. The subscription
to house/+/temperature would result in all messages being sent to the previously
mentioned topic house/living-room/temperature as well as any topic with an
arbitrary value in the place of living room, for example house/kitchen/temperature.

The plus sign is a single level wild card and only allows arbitrary values for one
hierarchy. If you need to subscribe to more than one level, for example to the
entire subtree, there is also a multilevel wildcard (#). It allows you to subscribe to
all underlying hierarchy levels. For example, house/# is subscribing to all topics
beginning with house.

Why MQTT?

Lightweight and Efficient
MQTT clients are very small and require minimal resources so can be used on
small microcontrollers. MQTT message headers are small to optimise network
bandwidth.

Bi-directional Communications
MQTT allows for messaging between device to cloud and cloud to device.
This makes for easy broadcasting messages to groups of things.

Scale to Millions of Things
MQTT can scale to connect with millions of IoT devices.

Reliable Message Delivery
Reliability of message delivery is important for many IoT use cases. Therefore,
MQTT has defined three ‘quality of service’ levels: 0 – once at most; 1 – at least
once; 2 – exactly once.

Support for Unreliable Networks
Many IoT devices connect over unreliable cellular networks. MQTT’s support for
persistent sessions reduces the time to reconnect the client with the broker.

Security Enabled
MQTT makes it easy to encrypt messages using TLS and authenticate clients using
modern authentication protocols, such as OAuth.

32
INTEROPERABILITY PLAYBOOK

MQTT DEMO – Health and Safety IoT

https://ets.mybluemix.net/catalogue//demos/healthAndSafetyIoT/

Business Scenario
On a construction site there are many health and safety requirements that workers
must follow, but it is often very difficult for a construction site manager to monitor
and enforce these rules.

If any serious incidents occur on-site, workers may be at high risk of long-term
injury if they are not seen to very quickly. Such an example would be if something
fell onto the head of a worker and knocked them unconscious.

Business Value
Implementing a solution to address this problem shows the value of having a
connected world. By utilising the sensor and IoT architecture, it is then easy to
plug into such a system that can offer real insight into the performance and health
and safety of the site’s workers.

The Solution
Finding an IoT-based way to address this challenge involves sensors, a platform,
and putting all the pieces together.

MQTT is used to send regular data from sensors that are embedded in the everyday
equipment and clothing that the workers wear. This data is collated onto the IBM
Watson IoT platform and run through NodeRED, to pick out the relevant data.

Events can then be sent to any platform of choice, whether that be a smartwatch
being worn by the site manager, or in this case a centralised UI/Dashboard that
the site manager can monitor.

https://ets.mybluemix.net/catalogue//demos/healthAndSafetyIoT/
https://mqtt.org
https://www.ibm.com/cloud/internet-of-things
https://www.ibm.com/cloud/internet-of-things
https://nodered.org

33
Chapter 3.0 Interoperability – Masterclass

Graph QL

GraphQL is a query language for APIs. GraphQL APIs are becoming more popular
with developers because of some of the benefits they offer over RESTful APIs.
One of the biggest benefits is that GraphQL allows for smarter and more precise
querying which is especially useful when working with large APIs that return a
lot of data.

GraphQL enables users to specify exactly what data they get back in their
response – nothing more, and nothing less – and it allows querying for multiple
fields in a single request.

GraphQL was developed to cope with the need for more flexibility and efficiency
in client-server communication.

Data Fetching with GraphQL

Data Fetching with REST vs GraphQL
With a REST API, you would typically gather the data by accessing multiple
endpoints. E.g. if you need to fetch information about a user of a service, you
may need to call several endpoints. These could be:

• /users/<id> endpoint to fetch the initial user data
• /users/<id>/posts endpoint that returns all the posts for a user
• /users/<id>/followers that returns a list of followers per user

In GraphQL on the other hand, you’d simply send a single query to the GraphQL
server that includes the concrete data requirements. The server then responds
with a JSON object where these requirements are fulfilled.

https://graphql.org

34
INTEROPERABILITY PLAYBOOK

GraphQL vs. REST

GraphQL can provide some significant querying efficiencies compared to REST.
Send a GraphQL query to your API and get exactly what you need, nothing more
and nothing less. It solves the problem of fetching too much data, or not enough
data, and having to make multiple requests.

GraphQL queries always return predictable results. Apps using GraphQL are fast
and stable because they control the data they get, not the server.

GraphQL was developed to cope with the need for more flexibility and efficiency.
It solves many of the shortcomings and inefficiencies that developers experience
when interacting with REST APIs.

GraphQL Development

GraphQL means a single endpoint for all the clients who want to get data from the
server. That means you can fetch everything with a single request.

This query works by sending a POST request with all the data requirements for the
client. This will be processed by the server and only exactly what is asked for will
be returned.

This also allows for rapid iterations, as changes on the client-side can be made
without any extra work on the server. Since clients can specify their exact data
requirements, no backend engineer needs to adjust when the design and data
needs on the frontend change.

GraphQL APIs only expose a single endpoint, and you use the query definition as a
client to define the data you want.

GraphQL Schema Definition Structure

GraphQL uses a strong type system to define the capabilities of an API. All the types
that are exposed in an API are written down in a schema using the GraphQL
Schema Definition Language (SDL). This schema serves as the contract between
the client and the server to define how a client can access the data.

35
Chapter 3.0 Interoperability – Masterclass

Once the schema is defined, the teams working on the frontend and backends can
do their work without further communication, since they both are aware of the
definite structure of the data that’s sent over the network.

Frontend teams can easily test their applications by mocking the required data
structures. Once the server is ready, the switch can be flipped for the client apps
to load the data from the actual API.

What are Webhooks?

Webhooks are API-like concepts that are being utilised to allow communication
between applications. They are an incredibly essential and resource-light means
of implementing event reactions.

Webhooks are restricted to, you guessed it, the web. This implies that they must
communicate over a web protocol—HTTP in almost every case.

Webhooks allow you to receive real-time data from an app when an event happens.
Web services use webhooks to provide other services with real-time information
through HTTP POST when something happens.

However, webhooks and APIs differ in how they make requests. For instance,
APIs will place calls for data whether there’s been a data update response, or not.
While webhooks receive calls through HTTP POSTs only when the external
system you’re hooked to has a data update.

Webhooks are commonly used to perform smaller requests and tasks, however,
there are situations where a webhook is more appropriate than an entire API.

One common scenario is when your app or platform demands real-time updates,
but you don’t want to waste your resources. In this instance, a webhook framework
would be beneficial.

To implement webhooks all you must do is register a URL with the company
providing the service you’re requesting data from. That URL will accept data and
can activate a workflow to turn the data into something useful. In most cases, you
can even specify the situations in which your provider will deliver you the data.

https://rapidapi.com/collection/real-time
https://rapidapi.com/blog/api-glossary/post/

36
INTEROPERABILITY PLAYBOOK

Webhooks vs. APIs – Restaurant Example

APIs
1. When you (a programme) go to a restaurant, a waiter (the API) will take your order
2. The waiter goes to the kitchen (server) and delivers your order (API request)
3. The waiter returns to your table with the food (API response)

Webhooks
1. You call up a restaurant and order pizza for delivery
2. You tell them exactly what pizza you want and give them your address

(setting up the webhook)
3. The pizza is ready to be delivered (event)
4. The delivery person picks up the pizza, delivers it to your door and rings the

doorbell (webhook provider collects data, ready to share along listener)
5. You come to the door to get your pizza (POST requests fires as callback)
6. You do what you want with the pizza (action within third party app)

Food (response) Food (response)

Collection from delivery
person (callback)

Order (request) Order (request)

Pizza delivery
(HTTP POST)

37
Chapter 3.0 Interoperability – Masterclass

Webhook Example

An Example: GitHub
A good example of webhooks in action is GitHub, which lets you set up webhooks
to subscribe to various events that you might be interested in. So, if I want to be
notified when a pull request is created, I can tell GitHub where my webhook is
hosted, and then whenever a pull request is created on my project, GitHub will
make an HTTP request to my callback URL, posting a JSON object that contains
information about the pull request.

I can then write my own custom code that does whatever I want with that
information; whether it’s sending myself a text, or automatically accepting the
pull request (don’t do that), or triggering an automated CI build that will validate
the quality of the pull request. The point is, I can do whatever I like because
GitHub has provided me with an extensibility point.

Probably the main reason that webhooks have only recently become more
ubiquitous, is that they require you to have a server to hand which you can use
to listen for them.

While webhooks aren’t a standard, most people implement them in the same way:
when an event happens in your programme that another programme is subscribed
to, loop though each subscription and check whether it has access to view that
thing, and if so, send an HTTP POST request to your subscriber’s URL.

It is then up to the subscriber to carry out an action on the webhook if it is needed.

We’re going to show a super simple webhook example using GitHub and a webhook
tester. This simplifies things because it means we don’t have to set up a listener
URL on a server.

We’re going to use GitHub’s webhooks. More specifically, we want Webhook Tester
to be notified when we make a comment on a commit within a certain repository.

POST request

38
INTEROPERABILITY PLAYBOOK

Workflow order:
1) Set up the webhook in GitHub
2) Test the webhook by commenting on commits in the repository
3) An HTTP POST request gets submitted to webhook.site
4) The request is visible in the call log

Should My Service Offer Webhooks?

Does your service let users initiate long-running operations? Are there events in
your system that the users of your service might like to be notified in real-time
about? If so, offering webhooks will make your system much easier for consumers
to work with.

However, my recommendation is to make webhooks optional in your design.
They should not provide any information that could not also be retrieved
through polling. That way, users who don’t want to (or can’t) host a webhook
will still be able to use your service.

Also, if you’re going to offer webhooks, think carefully about security. Make sure
you follow the best practices and consider what the implications would be if a
fake webhook was received by the system.

“Webhook equivalents” for GraphQL are called subscriptions.

API Documentation for Packages in This Workshop
Core: https://ibm.co/TWCdac
Agriculture: https://ibm.co/TWCagr
History on Demand: https://ibm.co/TWChod
Passport Advantage - Overall API Documentation: https://docs.google.com/
document/d/15Ru_3wdMgpbM4aOCm-4qNAnRfjx2w-Ruw3lnr8Hnodk/
edit?usp=sharing

https://ibm.co/TWCdac
https://ibm.co/TWCagr
https://ibm.co/TWChod
https://docs.google.com/document/d/15Ru_3wdMgpbM4aOCm-4qNAnRfjx2w-Ruw3lnr8Hnodk/edit?usp=sharing
https://docs.google.com/document/d/15Ru_3wdMgpbM4aOCm-4qNAnRfjx2w-Ruw3lnr8Hnodk/edit?usp=sharing
https://docs.google.com/document/d/15Ru_3wdMgpbM4aOCm-4qNAnRfjx2w-Ruw3lnr8Hnodk/edit?usp=sharing

39
Chapter 3.0 Interoperability – Masterclass

Annex

41
Annex

Historical
Ex. “What was the
weather X days ago?”

Immediate Future
Ex. “What will the

weather be on X date?”

Current
Ex. “What is the
weather right now”

Beyond
Ex. “What will the

weather be like in the

next few months?”

Seasonal Forecast

Probabilistic Data

Weather Forecasts

Site Based Weather Observations

Severe Weather Reports

Weather Imagery

Road Conditions

Weather Alerts / Agriculture

Tropical Storms

Beyond+
Ex. “What will the

weather be like in the

next few decades?”

Climate Change

Models

Weather Data Packages

42
INTEROPERABILITY PLAYBOOK

Available Packages for Testing

DATA PACKAGE: CORE

DATA PACKAGE: AGRICULTURE

Core provides access to the most
useful weather data to get started

What does it include?

2-Day Hourly Forecast –
Forecasts for next 48 hours
starting from the current time.

Daily Forecast – Forecast for
24-hour periods starting today
for the next 3, 5, 7 and 10 days
including forecasts for the
daytime and nighttime seg-
ments.

Intraday Forecast – Forecasts
for 6-hour periods starting today
for the next 3,5,7 and 10 days
including forecasts for the
morning, afternoon, evening and
overnight segments.

This is a robust set of agriculture
specific APIs providing hourly
forecasts out to 15 days, built
using a weighted blend of the
following weather models: GFS
Operational & Ensemble, ECM
Operational, NAM & Deep
Thunder.

What does it include?

Reference Evapotranspiration –
Forecast based on idealised
conditions. Utilising similar
implementation to which is used
by National Weather Service.

Site-Based Observations –
Observed weather data (temper-
ature, wind direction and speed,
humidity, pressure, dew point,
visibility, and UV Index) as well
as a sensible weather phrase and
its matching weather icon that
are collected from METAR and
SYNOP observation stations
worldwide.

Time Series-Based Observations
– Observed weather data from
site based observation stations
for the previous 24 hours.

Weather Alert Headlines And
Details – Govermental-issued
alert headlines and details.

Core Specific Reference
Evapotranspiration – 103
different crops supported
Based on the % Crop Maturity
and Crop Type specified in the
API call.

Model Evapotranspiration –
Forecast based on actual land
use conditions.

Soil Moisture/Soil Temperature
– User specifies the specific
depth data is desired at. Data
available down to 200cm below
the surface.

User specifies latitude/longitude

Location-Mapping Services –
Utility API for finding locations
per zip code, geocode, city,
internationalised state, region
district, or province.

Current Conditions And Forecast
Imagery Layers – detailed set of
tile based raster products
derived from observation and
forecast data ready to be applied
to your base map.

Radar And Satellite Layers –
Provides selected radar and
satellite raster products.

Lifestyle APIs –
Degree Days: Growing
Degree Days: (GGD), Heating
Degree Days: (HDD), Cooling
Degree Days: (CDD)
Frost Index & Watering Needs

43
Annex

HISTORY ON DEMAND

This package offers precise and accurate historical weather information, featuring a
22.5 km worldwide grid with gap-filled datasets and hourly historical information
dating back to July 2011. HoD provide most common historical parameters in a
consistent grid in a “buy-what-you-need” model. The data can for example be used to
understand how weather has impacted demand for a product or to correlate weather
to performance metrics of your organisation.

Direct API use with location and time
inputs

Historical data back to 2011

Support for multi-locations query
and bounding box

22.5 km resolution

Hourly values for surface temperature,
wind speed, wind direction, relative
humidity, atmospheric pressure, and
dewpoint rate.

Processes billions of observations
and forecasts to build the industry’s
most precise and accurate historical
record of weather data.

Data Science using historical weather
data to train models and find busi-
ness correlations

Global snapshot of historical temps
on a given date

What is it?

What does it
include?

44
INTEROPERABILITY PLAYBOOK

Weather API´s Documentation Structure

‘IBM Passport Advantage Offering’ – name of the packages that exist in the
Weather Company’s full portfolio. We have access to:

• Weather Company Data – Core
• Weather Company Data – Agriculture
• Weather Company Data – History on Demand

‘Offering Summary Link’ – guide for how to use the APIs in this package.
‘Atomic API Name’ – the name of the unique API, sitting in a domain portfolio
and domain. Each atomic API has several (atomic) endpoints.

The API Common Usage Guide contains information on API parameters that
are consistent across end points (e.g. units of measure).

The Atomic API Documentation contains:

• List of available API endpoints
• URL construction examples, including required parameters
• Data elements and definitions
• Example response (JSON sample)

45
Annex

Weather API Documentation Links

API documentation for packages in this workshop:

• Core: https://ibm.co/TWCdac
• Agriculture: https://ibm.co/TWCagr
• History on Demand: https://ibm.co/TWChod

Passport Advantage:
https://docs.google.com/
document/d/15Ru_3wdMgpbM4aOCm-4qNAnRfjx2w-Ruw3lnr8Hnodk/
edit?usp=sharing

https://ibm.co/TWCdac
https://ibm.co/TWCagr
https://ibm.co/TWChod
https://docs.google.com

46
INTEROPERABILITY PLAYBOOK

47
Annex

Weather API Integration Case Studies

Customised agriculture forecasts: https://www.ibm.com/case-studies/emnotion-cloud
Route management: https://www.ibm.com/case-studies/xship
Disaster management: https://www.ibm.com/case-studies/satsure

https://www.ibm.com/case-studies/emnotion-cloud
https://www.ibm.com/case-studies/xship
https://www.ibm.com/case-studies/satsure

Publisher
Deutsche Gesellschaft für
Internationale Zusammenarbeit (GIZ) GmbH

Tech Entrepreneurship Initiative
“Make-IT in Africa”

Registered offices
Bonn and Eschborn

Friedrich-Ebert-Allee 32 + 36
53113 Bonn / Germany
T +49 228 44 60-0
F +49 228 44 60-17 66

Dag-Hammarskjöld-Weg 1-5
65760 Eschborn / Germany
T +49 61 96 79-0
F +49 61 96 79-11 15
E info@giz.de
I www.giz.de

Authors
Marc Hümmer
Cecilia Ivsen
Desiree Winges

Editor
creative republic/David Steel

Design
creative republic, Frankfurt a. M. / Germany

Illustrations
© shutterstock & creative republic

Photos Page 36
© shutterstock

GIZ is responsible for the content of this
publication.

On behalf of the
German Federal Ministry for Economic
 Cooperation and Development (BMZ)

Division 112 - Digital technologies in
development cooperation

Postal address of BMZ headquarters
Bonn and Berlin

Dahlmannstr. 4
53113 Bonn / Germany
T +49 228 99 535-0
F +49 228 99 535-3500

Stresemannstraße 94
10963 Berlin
T +49 30 18 535-0
F +49 30 18 535-2501

E poststelle@bmz.bund.de
I www.bmz.de

As of
December 2020

mailto:info%40giz.de?subject=
http://www.giz.de
mailto:poststelle%40bmz.bund.de?subject=
http://www.bmz.de

